Sale!

Data Science analyst

Original price was: 850,000.00৳ .Current price is: 840,000.00৳ .

Category:

Description

🔰

Beginner To Adanced 

🔹

Module 1: Introduction to Data Science

  • What is Data Science?
  • Data Science lifecycle
  • Real-world applications
  • Roles: Data Analyst vs. Data Scientist vs. Data Engineer

🔹

Module 2: Python for Data Science

  • Python basics: variables, data types, control structures
  • Functions, loops, list/dict comprehension
  • File handling
  • Libraries:
    • NumPy (arrays, broadcasting, math)
    • Pandas (dataframes, series, manipulation)
    • Matplotlib / Seaborn (basic plots)

Project Idea: Titanic survival prediction (basic EDA + classification)


📊

Intermediate Level

🔹

Module 3: Data Wrangling & EDA

  • Cleaning: missing values, outliers, duplicates
  • Parsing dates, encoding categories
  • EDA techniques
  • Visualization: box plots, heatmaps, histograms

🔹

Module 4: Statistics & Probability

  • Descriptive statistics
  • Distributions (normal, binomial, Poisson)
  • Central Limit Theorem
  • Hypothesis testing
  • Confidence intervals, p-values

🔹

Module 5: Databases & SQL

  • Relational databases
  • SQL operations (SELECT, JOIN, GROUP BY, etc.)
  • Subqueries, window functions
  • Connecting SQL with Python

Project Idea: Retail sales dashboard using SQL + Pandas


🤖

Advanced Level

🔹

Module 6: Machine Learning (ML) Basics

  • Supervised vs. unsupervised learning
  • Scikit-learn API
  • Regression: Linear, Ridge, Lasso
  • Classification: Logistic Regression, k-NN, Decision Trees
  • Model evaluation: accuracy, precision, recall, F1-score, confusion matrix

🔹

Module 7: Intermediate ML

  • Cross-validation, grid search
  • Random Forest, Gradient Boosting (XGBoost/LightGBM)
  • Feature selection & engineering
  • Handling imbalanced data (SMOTE, stratification)
  • Pipelines and preprocessing

🔹

Module 8: Unsupervised Learning

  • Clustering: k-means, DBSCAN, hierarchical
  • Dimensionality reduction: PCA, t-SNE
  • Association rules (Apriori, FP-Growth)

Project Idea: Customer segmentation using unsupervised techniques


🧠

Expert Level

🔹

Module 9: Deep Learning

  • Neural Networks basics
  • Activation functions, loss functions, backpropagation
  • Using TensorFlow or PyTorch
  • CNNs (for images), RNNs/LSTMs (for sequences)
  • Transfer Learning (e.g., ResNet, BERT)

🔹

Module 10: Natural Language Processing (NLP)

  • Text preprocessing (tokenization, stemming, TF-IDF)
  • Word embeddings: Word2Vec, GloVe
  • Sentiment analysis
  • Language modeling
  • Transformers (e.g., Hugging Face, BERT/GPT)

🔹

Module 11: Big Data & Deployment

  • Working with large datasets (Dask, PySpark)
  • Cloud platforms: AWS, GCP, Azure (intro)
  • ML model deployment:
    • Flask / FastAPI APIs
    • Docker basics
    • Streamlit dashboards

Capstone Projects:

  1. End-to-end ML pipeline (data to deployment)
  2. Deep Learning: Image classification or NLP task
  3. Big Data analysis using PySpark or cloud

🧰

Tools & Platforms

  • Languages: Python, SQL
  • Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn, TensorFlow/PyTorch
  • Version Control: Git, GitHub
  • Environments: Jupyter Notebook, VS Code, Google Colab
  • Cloud: AWS S3, Lambda, EC2 (basic

Reviews

There are no reviews yet.

Be the first to review “Data Science analyst”

Your email address will not be published. Required fields are marked *