Description
Beginner To Adanced
Module 1: Introduction to Data Science
- What is Data Science?
- Data Science lifecycle
- Real-world applications
- Roles: Data Analyst vs. Data Scientist vs. Data Engineer
Module 2: Python for Data Science
- Python basics: variables, data types, control structures
- Functions, loops, list/dict comprehension
- File handling
- Libraries:
NumPy(arrays, broadcasting, math)Pandas(dataframes, series, manipulation)Matplotlib/Seaborn(basic plots)
Project Idea: Titanic survival prediction (basic EDA + classification)
Intermediate Level
Module 3: Data Wrangling & EDA
- Cleaning: missing values, outliers, duplicates
- Parsing dates, encoding categories
- EDA techniques
- Visualization: box plots, heatmaps, histograms
Module 4: Statistics & Probability
- Descriptive statistics
- Distributions (normal, binomial, Poisson)
- Central Limit Theorem
- Hypothesis testing
- Confidence intervals, p-values
Module 5: Databases & SQL
- Relational databases
- SQL operations (SELECT, JOIN, GROUP BY, etc.)
- Subqueries, window functions
- Connecting SQL with Python
Project Idea: Retail sales dashboard using SQL + Pandas
Advanced Level
Module 6: Machine Learning (ML) Basics
- Supervised vs. unsupervised learning
- Scikit-learn API
- Regression: Linear, Ridge, Lasso
- Classification: Logistic Regression, k-NN, Decision Trees
- Model evaluation: accuracy, precision, recall, F1-score, confusion matrix
Module 7: Intermediate ML
- Cross-validation, grid search
- Random Forest, Gradient Boosting (XGBoost/LightGBM)
- Feature selection & engineering
- Handling imbalanced data (SMOTE, stratification)
- Pipelines and preprocessing
Module 8: Unsupervised Learning
- Clustering: k-means, DBSCAN, hierarchical
- Dimensionality reduction: PCA, t-SNE
- Association rules (Apriori, FP-Growth)
Project Idea: Customer segmentation using unsupervised techniques
Expert Level
Module 9: Deep Learning
- Neural Networks basics
- Activation functions, loss functions, backpropagation
- Using
TensorFloworPyTorch - CNNs (for images), RNNs/LSTMs (for sequences)
- Transfer Learning (e.g., ResNet, BERT)
Module 10: Natural Language Processing (NLP)
- Text preprocessing (tokenization, stemming, TF-IDF)
- Word embeddings: Word2Vec, GloVe
- Sentiment analysis
- Language modeling
- Transformers (e.g., Hugging Face, BERT/GPT)
Module 11: Big Data & Deployment
- Working with large datasets (Dask, PySpark)
- Cloud platforms: AWS, GCP, Azure (intro)
- ML model deployment:
- Flask / FastAPI APIs
- Docker basics
- Streamlit dashboards
Capstone Projects:
- End-to-end ML pipeline (data to deployment)
- Deep Learning: Image classification or NLP task
- Big Data analysis using PySpark or cloud
Tools & Platforms
- Languages: Python, SQL
- Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn, TensorFlow/PyTorch
- Version Control: Git, GitHub
- Environments: Jupyter Notebook, VS Code, Google Colab
- Cloud: AWS S3, Lambda, EC2 (basic





Reviews
There are no reviews yet.